Growing Neural Network Trees Efficiently and Effectively
نویسندگان
چکیده
Neural network tree (NNTree) is a hybrid learning model with the overall structure being a decision tree (DT), and each non-terminal node containing an expert neural network (ENN). Generally speaking, NNTrees outperform conventional DTs because better features can be extracted by the ENNs, and the performance can be improved further through incremental learning. In addition, as we have shown recently, NNTrees can always be interpreted in polynomial time if we restrict the number of inputs for each ENN. Currently, we proposed an algorithm which can grow the tree automatically, and can provide very good results. However, the algorithm is not efficient because GA is used both in re-training the ENNs and in creating new nodes. In this paper, we propose a way to replace GA with the back propagation (BP) algorithm in the growing algorithm. Experiments with several public databases show that the improved algorithm can grow better NNTrees, with much less computational costs.
منابع مشابه
Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملEstimating Suspended Sediment by Artificial Neural Network (ANN), Decision Trees (DT) and Sediment Rating Curve (SRC) Models (Case study: Lorestan Province, Iran)
The aim of this study was to estimate suspended sediment by the ANN model, DT with CART algorithm and different types of SRC, in ten stations from the Lorestan Province of Iran. The results showed that the accuracy of ANN with Levenberg-Marquardt back propagation algorithm is more than the two other models, especially in high discharges. Comparison of different intervals in models showed that r...
متن کاملPredicting The Type of Malaria Using Classification and Regression Decision Trees
Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...
متن کاملApplication of Response Surface Methodology and Artificial Neural Network for Analysis of p-chlorophenol Biosorption by Dried Activated Sludge
Phenolic compounds are considered as priority pollutants because of their high toxicity at low concentration. In the present study, the sorption of p-chlorophenol (p-CP) by dried activated sludge was investigated. Activated sludge was collected as slurry from the sludge return line of a municipal wastewater treatment plant. Sorption experiments were carried out in batch mode. In order to invest...
متن کامل